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Abstract. The present experimental state of the neutron polarizabilities is discussed. Two possibilities to
extract the neutron polarizabilities from experiments are considered: i) quasi-free Compton scattering from
the bound neutron and ii) scattering of slow neutrons in the Coulomb field of heavy nuclei. The latter
experiments have led to an intense discussion from which we conclude that all attempts to measure the
neutron polarizabilities using this method have failed. It is shown that quasi-free Compton scattering from
the neutron bound in the deuteron at photon energies from 200 MeV to 300 MeV is the most promising
method of measuring the neutron polarizabilities. To arrive at an experimental accuracy of ±2 · 10−4fm3

when extracting the electric polarizability ᾱn, one has to measure the differential cross section in the energy
range from 200 MeV to 300 MeV at backward photon scattering angles with a precision of 5%. It is shown
that theoretical uncertainties of the method are mainly due to the dependence of the cross section on the
selection of multipole analysis of single pion photoproduction. At present they prevent the extraction of
ᾱn with an accuracy better than ±2 · 10−4fm3.

PACS. 13.60.Fz Elastic and Compton scattering – 25.20.-x Photonuclear reactions

1 Introduction

The electric and magnetic polarizabilities ᾱ and β̄ are fun-
damental properties of the nucleon. They describe the re-
sponse of the nucleon to an external electromagnetic field.
In a classical sense, ᾱ is related to the separation of charges
inside the nucleon. It measures the ease how an electric
dipole moment is induced. The magnetic polarizability β̄
consists of two parts: 1) the paramagnetic part describes
the alignment of the internal magnetic moments to an
external magnetic field; 2) in a classical picture the dia-
magnetic part is related to the currents induced by the
external magnetic field. These currents produce an addi-
tional magnetic field opposing the external one and give
rise to an induced magnetic moment. Thus, the polariz-
abilities are not static structure constants as mass, charge
and magnetic moment, but also carry information about
the dynamics inside the nucleon.

The polarizabilities ᾱ and β̄ of the proton can be mea-
sured via Compton scattering at low energies. In the low-
energy expansion of the scattering amplitude, neglecting
terms containing the anomalous magnetic moment, the
polarizabilities appear in the order of E2

γ ,

f =
{
−Q

2

M
+ 4πᾱEγEγ′

}
ε ′ · ε

+4πβ̄ (ε ′×k′) · (ε×k) , (1)

where Q is the charge, M the mass of the particle, Eγ (E′γ)
the incident (scattered) photon energy, ε (ε ′) denotes the
polarization of the incident (scattered) photon and k (k′)
its momentum. The term −Q2/M is the Thomson ampli-
tude which vanishes in the case of the neutron due to its
zero charge. Including also spin and anomalous magnetic
moment [1,2], one obtains the corresponding differential
cross section for Compton scattering from the proton:
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Po
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(
Eγ′

Eγ
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EγEγ′

×
[
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2
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ᾱ− β̄
2

(1− cosΘ)2

]
. (2)

Here, the first term of the r.h.s is the Powell cross section
[3] for photon scattering from a charged particle with spin
1
2 and anomalous magnetic moment. The second term is
the interference of the Thomson and the polarizability am-
plitude. Equation (2) shows that in the case of the proton
this term becomes measurable, even at rather small pho-
ton energies (above 50 MeV). The neutron polarizabilities
start manifesting themselves only in the E4

γ-order. Conse-
quently, the corresponding cross section can be measured
only at higher energies.

The inspection of (2) shows that at forward angles it
is sensitive to the sum of ᾱ and β̄, at backward angles to
their difference and at 90◦ to ᾱ only. For forward scatter-
ing one obtains the Baldin [1] sum rule when applying
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dispersion relations and using the measured total photon-
proton cross section [4,5]:

ᾱp + β̄p =
1

2π2

∞∫
mπ

σtot(Eγ)
E2
γ

dEγ = 14.2± 0.3, (3)

in units of 10−4 fm3 which will be used henceforth. Proton
Compton scattering experiments below the π-production
threshold have been performed at various scattering angles
[6] using tagged and untagged bremsstrahlung. MacGib-
bons‘s analysis [6] gives the following values for the proton
[7]:

ᾱp = 12.1± 0.8(stat.)± 0.5(syst.),
β̄p = 2.1∓ 0.8(stat.)∓ 0.5(syst.). (4)

Thus, the electric polarizability of the proton is mea-
sured with an accuracy of 10% and the magnetic one with
an accuracy of about 60%. A new experimental attempt
has been made to determine the electromagnetic polar-
izabilities of the proton at the tagged photon facility at
MAMI (Mainz, Germany), using the TAPS detector sys-
tem. An angular range from 30◦ to 150◦ and an energy
range from 30 MeV to 170 MeV has been covered. The
expected statistical accuracy is 5% for the measured dif-
ferential cross sections. This experiment will also allow to
test the Baldin sum rule.

2 Status of the neutron electric polarizability

In Fig. 1 the experimental status of the electric polariz-
ability of the neutron is summarized and compared with
theoretical predictions. There are two different approaches
to measure ᾱn: i) scattering of low energy neutrons in
the Coulomb field of heavy nuclei; ii) quasi-free Compton
scattering from the neutron bound in the deuteron. Note
here, that in the neutron experiments the so-called static
polarizability αn is measured, rather than the ’generalized
static’ one ᾱn. To obtain ᾱn, a small relativistic correction
∆αn=0.62 [18,19] must be added to αn.

Up to 1991 there seemed to be a convergence of the
data obtained for ᾱn. However, there has been a contro-
versial discussion on the systematic uncertainties of the
neutron scattering experiments. After Schmiedmayer [13]
had published his value of

αn = 12.0± 1.5(stat.)± 2.0(syst.), (5)

Nikolenko and Popov [20,21] raised serious doubts con-
cerning the smallness of the quoted errors. The value has
been obtained from the total neutron-nucleus cross section
of 208Pb. Taking into account resonance contributions,
capture cross sections, neutron-electron and Schwinger scat-
tering, Schmiedmayer had obtained the total scattering
cross section in the energy interval 50 eV to 50 keV in the
form of the following expression:

σs(k) = 11.508(5) + 0.69(9)k
−448(3)k2 + 9500(400)k4. (6)
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Fig. 1. A compilation of experimental data [8-14] and theoreti-
cal predictions [5], [15-17] for the neutron electric polarizability
(see text for more details). Neutron scattering experiments are
indicated by (γ∗, γ∗). The dashed area represents the Particle
Data Group value [7]

Here, σs(k) is given in units of barns, k = 2.1968×
10−4

√
EA/(A+1) (k in fm−1 and E in eV, A is the nuclear

mass number) is the neutron wave number. The term lin-
ear in k corresponds to polarizability scattering. Nikolenko
and Popov [20] created pseudo-experimental cross sec-
tions according to expression (6), assuming different sta-
tistical errors of the scattering cross section. When repro-
ducing the first term on the r.h.s in (6) with the same er-
ror, the term linear in k obtained the much larger error of
0.69(56). They concluded that from this experiment only
an upper limit can be deduced: αn < 20. In 1995 Koester
et al. [14] published a value, also obtained from neutron-
nucleus experiments, which is compatible with zero:

αn = 0± 5. (7)

Again, there was a discussion about the extraction
method used to obtain the electric polarizability. Alexan-
drov [22] pointed out that the determination of αn re-
quires a statistical precision of the total neutron cross
section of ∆σ/σ ≈ 10−3. At this high level of statistical
precision it seems to be very difficult to remove possible
sources of background. He also focuses on the problems
arising from small angle scattering, the proper treatment
of p-wave scattering and also the inclusion of the term
proportional k3 which is missing in (6). In 1997 Enik et
al. [23] continued the discussion on the neutron scattering
experiments. They investigated the physical interpretation
of the coefficients in expression (6), concluding that there
might be some problems with the cross section measured
by Schmiedmayer due to background contributions. It has
been pointed out that a term proportional to k3 also has
to be taken into account. The outcome of Enik’s paper is
that the systematic error in Schmiedmayer’s value for αn
was underestimated by a factor of 3 − 4 and the result
should be taken as

αn ∼ 7− 19. (8)
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In this paper we do not contribute to the discussion of
neutron scattering experiments. We rather quote ongoing
work [20-23] in order to illustrate that there is a need for
measurements of the neutron polarizabilities by a different
method, which may be provided by quasi-free Compton
scattering.

The only existing experiment on quasi-free Compton
scattering by the neutron bound in the deuteron, carried
out by Rose et al. [12], was successful in the sense that the
relevant effect, i.e. coincidence-events between Compton-
scattered photons and recoil neutrons, was definitely iden-
tified. It was possible to extract the value ᾱn=10.7 for the
electric polarizability from the experimental data with an
upper error of +3.3. The determination of a lower error
failed because the rather large lower error of 18% of the
differential cross section did not correspond to a possible
electromagnetic polarizability (see also Sect. 3). In order
to avoid this difficulty, the lower error of the differential
cross section should have been 10% or smaller.

There have also been many attempts to calculate the
nucleon polarizabilities in various models [5,15-17,24-29].
Here we will mention only few of them. For example, in
a dispersion calculation [5] the following values were ob-
tained:

ᾱp = 9.0± 2.0, β̄p = 5.2± 2.0, (9)
ᾱn = 11.1± 2.0, β̄n = 4.7± 2.0, (10)

where the quoted errors characterize the uncertainty of the
model used to calculate the two-pion contributions in the
evaluation of the dispersion integrals. Another more prin-
cipal source of uncertainty is the 2π (σ-meson) exchange in
the t-channel used to model the asymptotic contribution
to ᾱ− β̄ [30]. In dispersion theories this asymptotic con-
tribution dominates the difference ᾱ − β̄ and can either
be taken from the linear σ-model or from the t-channel
processes NN̄ → ππ, ππ → γγ. Because of the principal
uncertainties involved we consider ᾱ − β̄ as an indepen-
dent input parameter of dispersion theories which has to
be determined through Compton scattering experiments.

Today, one of the most promising methods of low en-
ergy hadron physics is the chiral perturbation theory
(ChPT). The first calculation of the nucleon polarizabili-
ties to one loop order in ChPT [15] gave

ᾱp = 7.4, β̄p = −2.0, (11)
ᾱn = 10.1, β̄n = −1.2. (12)

The electric polarizabilities are in reasonable agreement
with the data, whereas the values obtained for the mag-
netic polarizabilities contradict the experimental ones be-
cause of their negative sign. A possible reason for this
could be the disregarding of the ∆-contribution in [15].

In a subsequent publication of the same group [16] a
calculation atO(p4) was performed and the∆-contribution
was taken into account, leading to

ᾱp = 10.5± 2.0, β̄p = 3.5± 3.6, (13)
ᾱn = 13.4± 1.5, β̄n = 7.8± 3.6, (14)

where the uncertainties are due to the counterterm con-
tribution from the ∆ and from a K, η loop effect.

Recently a further calculation of the nucleon polariz-
abilities within heavy baryon ChPT has been performed
[17]. The result is isospin independent and reads:

ᾱp,n = 20.8, β̄p,n = 14.7. (15)

These values reveal a very serious disagreement with the
experimental ones. Possible reasons for this are discussed
in [17].

In any case, the theoretical situation concerning the
nucleon polarizabilities is far from being satisfactory. One
should mention here that in [15–17] the ‘empirical’ in-
equality αexpn > αexpp is often referred to. We would like
to emphasize that, as follows from the above discussion,
such an inequality has not been verified since the electric
polarizability of the neutron has not yet been measured.

3 Quasi-free compton scattering from the
bound neutron

After the unsatisfactory discussion concerning neutron
scattering experiments the only promising method of de-
termining the electric polarizability of the neutron is quasi-
free Compton scattering from the neutron bound in the
deuteron1:

γd→ γ′np. (16)

A detailed calculation of the reaction (16) has been
carried out by Levchuk et al. [34]. The main graphs con-
tributing to this reaction are outlined in Fig. 2. Graphs
a) and b) describe the quasi-free scattering from the neu-
tron and the proton, respectively. The sum of these graphs
is often referred to as the plane wave impulse approxima-
tion (PWIA). In the case of quasi-free scattering, the non-
interacting nucleon behaves as a spectator. Rescattering,
i.e. final state interaction (FSI), graphs c) and d), and the
influence of meson exchange currents (MEC) and isobar
configurations (IC) described by the graphs e) and f) also
have to be taken into account.

The computer code of Levchuk et al. has been used for
a detailed theoretical investigation of the reaction (16).
If not stated otherwise, all the results presented below
have been obtained with the deuteron wave function and
np-scattering amplitude for the non-relativistic version,
OBEPR, of the Bonn potential [35]. The nucleon Comp-
ton scattering amplitudes have been taken from the dis-
persion model [30] using the multipole analysis [36] of sin-
gle pion photoproduction on the nucleon. The observable
is the triple differential cross section d3σ/dΩγ′dΩndEn
for a photon-neutron pair in the final state, showing a
clear peak (neutron-quasi-free-peak, NQFP) around the
expected energy for free scattering. Taking into account

1 The neutron polarizabilities can also be measured in the
elastic Compton scattering from the deuteron [31,32]. This
method, however, is applicable only below the pion threshold
[33]
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Fig. 2. Main graphs contributing to the reaction γd→ γ′np
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Fig. 3. Dependence of the differential cross section on ᾱn at
Eγ=100 MeV, Θγ′ = 135◦ and Θn = −20◦. Dashed, solid, and
dotted lines: ᾱn = 0, 10, and 20, respectively

Baldin’s sum rule prediction for the neutron, which L’vov
et al. [5] obtained as

ᾱn + β̄n = 15.8± 0.5, (17)

the cross section can be determined via the difference
(ᾱn − β̄n) at large scattering angles.

This is plotted in Fig. 3 for Eγ=100 MeV at fixed pho-
ton scattering and neutron emission angles: Θγ′ = 135◦,
Θn = −20◦ (note here that at a given photon scattering
angle Θγ′ the neutron angle Θn in the NQFP is approxi-
mately given by: Θn ≈ −(π−Θγ′)/2). The cross section is
very small (about 1 nb/MeV/sr2), which only allows ex-
periments with untagged bremsstrahlung beams. On the
other hand, the predicted cross sections for ᾱn = 0 and 10
are almost indistinguishable. Therefore, at photon ener-
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Fig. 4. Dependence of the cross section on ᾱn at Θγ′ = 135◦
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Fig. 5. Difference of the cross sections with ᾱn = 15 (dashed)
and ᾱn = 7 (dotted), relative to the cross sections with ᾱn = 11
in the center of the NQFP at Θγ′ = 135◦

gies below the pion threshold it is difficult but not impos-
sible to obtain a lower limit for ᾱn (see Section 2) provided
the value for ᾱn is close to 10 as predicted in many theo-
retical calculations (see Equations (10), (12), (14)).

At energies above 200 MeV these difficulties vanish
(see Figs. 4 and 5). The cross section at the NQFP is of
measurable size, i.e. tagged photon beams can be used. In
addition, at energies between 200 MeV and 300 MeV the
cross section is very sensitive to ᾱn. For example, varying
ᾱn from 7 to 15 in this energy region the cross sections
change by more than 20%. This means that an accuracy of
about 5% must be achieved in the center of the NQFP in
order to extract the electric polarizability with a precision
of ±2 (experimental only) from these experiments. An in-
teresting energy range is around 175 MeV, where the cross
section has no sensitivity on ᾱn at all. Near this energy
the used model is free of parameters so that a measure-
ment of the differential cross section at 175 MeV would
give an additional test for the reliability in calculating
the FSI, MEC, and IC performed in [34]. Although in
Figures 4 and 5 we present our results for the scattering



        

F. Wissmann et al.: On approaches to measure the electromagnetic polarizabilities of the neutron 197

0.0

0.5

1.0

1.5

2.0

Eγ=120 MeV
 

 

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

 αn

d3 σ /
dΩ

γ 'd
Ω

nd
E

n 
(n

b/
M

eV
/s

r2 )

Eγ=250 MeV

 

Fig. 6. The differential cross section in the center of the NQFP
at Θγ′ = 135◦ as a function of ᾱn at incident photon energies
of 120 MeV and 250 MeV. The dashed lines indicate values of
ᾱn = 10± 2

angle Θγ′ = 135◦ the conclusions above hold true also in
an angular region from 120◦ to 180◦.

Another presentation of the present results is given in
Fig. 6. At 120 MeV the cross section shows a local min-
imum at ᾱn ≈ 7. There, the differential cross section is
fixed and not sensitive to ᾱn. This observation also holds
true at other energies below the pion threshold. There-
fore, a definite determination of the lower limit for ᾱn is
hardly possible, as experienced in the previous experiment
of Rose et al. [12] and discussed in Section 2. At energies
above 200 MeV this difficulty vanishes (see picture at the
bottom of Fig. 6). There, the cross section is a monotonic
function of ᾱn, which allows one to extract a definite value
and upper and lower limits from the experiment.
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Fig. 7. Contributions of the different diagrams to the cross
section at Θγ′ = 135◦ in the center of the NQFP relative to
that of diagram 2a). Dotted, dashed, and solid lines: 2b), 2b)
to 2d), 2b) to 2f), respectively

To estimate the uncertainties arising from the theo-
retical modeling of the quasi-free reaction (16), we calcu-
lated the cross sections using three versions of the Bonn
OBEPR potential [35,37] and a separable approximation
[38] of the Paris potential [39]. All models were found to
give almost the same predictions. The relative deviation
is less than 1.2% in the NQFP region at Θγ = 135◦ reach-
ing maximum values for the OBEPR model [35] and the
Paris potential. This result can be easily understood if one
takes into account that the total effect of FSI decreases
from about 11% to 4% in the energy region 200 MeV to
300 MeV (see Fig. 7). The MEC and IC contribute even
less to the cross section, as shown in Fig. 7. Therefore, any
uncertainties in the parameters defining the MEC and IC
contributions have a negligible impact on the extracted
values of the polarizabilities.

A more serious source for uncertainties when extract-
ing the neutron polarizabilities from the experimental data
of the reaction (16) may stem from the multipole analysis
of pion photoproduction on the nucleon, which is neces-
sary to evaluate the nucleon Compton scattering ampli-
tudes exploited in our calculations. To check the sensi-
tivity of our results to the choice of multipole analysis,
we performed calculations with three analyses [36,40,
41]. One should keep in mind however that the analy-
sis [36] does not provide the correct value for the E0+

multipole in the threshold region [42]. The magnitude of
the E0+ multipole is about 10% smaller as compared to
a recent dispersion calculation [43]. The threshold values
of the amplitude from [36] are 24.9 and -29.3 (in units of
10−3/mπ+) for the π+n and π−p channels, respectively.
They should be compared with the following values : 28.0
[44], 28.2±0.6 [45] (both theoretical), 28.3±0.2 [46] (ex-
perimental) for the π+n-channel. Correspondingly -31.7,
-32.7±0.6 (both theoretical), and -31.8±0.2 (experimen-
tal) for the π−p-channel. To estimate a possible effect of
the E0+ multipole, we have performed a calculation with
the analysis [36] in which this multipole has been changed
according to the following prescription [42]:

E0+ → E0+ × [1 + 0.10(2− Eγ/150)], (18)

with Eγ in MeV. Such a replacement provides a 10% en-
hancement of the E0+ multipole in the threshold region
and leads only to small corrections in the ∆-region.

The results of the calculations are presented in Fig. 8.
The relative deviation of the analyses [41] and [36] is
about 7%. A possible effect of the enhancement of the
E0+-magnitude is estimated to be less than 5% in the
energy region from 200 to 300 MeV. Nevertheless, the de-
pendence of the cross sections on the choice of the analysis
does exist and prevents us from predicting the cross sec-
tions for given ᾱn with an accuracy better than ±5%. This
in turn means that theoretical uncertainties on the deter-
mination of the neutron polarizability ᾱn are about ±2.
To further reduce the dependence on the multipole analy-
sis, new measurements on neutron pion-photoproduction
would be very useful. In this sense, it would be desirable
to simultaneously study the process γd → π◦np in the
neutron quasi-free peak [47] together with reaction (16).
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Fig. 8. Difference of the cross sections calculated with analyses
[40] (dotted), [41] (dashed), relative to the ones calculated with
the latest analysis [36]. The full line shows the results for the
analysis [36] with the enhanced E0+ multipole (see text). All
the curves were obtained in the center of NQFP for Θγ′ = 135◦

at ᾱn = 11

Even more, because up to now there are no data on π◦-
photoproduction on the neutron in the energy region be-
low 300 MeV.

The extraction of ᾱn from the differential cross section
at backward photon scattering angles relies on the Baldin
sum rule. In our calculations we have used a value for
ᾱn + β̄n [5] which is given in (17). Until recently this has
been the only evaluation of the Baldin sum rule for the
neutron. A new analysis [48] including recent results of
photoabsorption cross section measurements gives

ᾱn + β̄n = 14.40± 0.66, (19)

which is not consistent with the previous value [5]. This
smaller value may be attributed to the use of the multipole
analysis [36] from which the authors obtained the pho-
toabsorption cross section in the threshold region up to
200 MeV. As already stated above, the analysis [36] gives
a too small value for the E0+ multipole at the threshold.
An enhancement of this multipole by about 10% could
lead to an increased value of about 15.1-15.3 [42]. The
uncertainty ±∆ᾱn+β̄n of the Baldin sum rule leads to an
uncertainty in the extracted value ᾱn of ±1

2∆ᾱn+β̄n if one
measures the differential cross section at backward angles.
This means, the difference between the extracted values
ᾱn using a value of ᾱn+β̄n from reference [5] and [48], re-
spectively, would be about 0.7. Assuming that the value of
[48] is approximately 15.2 the difference reduces to about
0.3 which can be taken as the uncertainty in ᾱn derived
from the accuracy of the Baldin sum rule for the neutron.

Another observable that can be measured in inelastic
Compton scattering from the deuteron and which may
give additional information on the neutron polarizabilities
is the photon asymmetry defined as

Σ =
dσ⊥ − dσ‖
dσ⊥ + dσ‖

, (20)
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Fig. 9. Energy dependence of the photon asymmetry Σ on ᾱn
in the center of the NQFP at Θγ′ = 90◦. Meaning of the curves
as in Fig. 4

where dσ⊥ (dσ‖) is the differential cross section for in-
coming photons polarized perpendicular (parallel) to the
plane of the outgoing photon and neutron.

As shown in [34], the photon asymmetry Σ is most
sensitive to the polarizabilities at photon scattering angles
near 90◦. This sensitivity of Σ in the NQFP region is
shown in Fig. 9. One can see that, for example at 250
MeV, Σ changes from -0.23 to -0.37 at variation of ᾱn
from 7 to 15. Therefore, to reach the accuracy ∆ᾱn ∼ ±2,
one has to measure the asymmetry with a precision of
10%.

Again the question concerning propagations of the un-
certainties in the calculated FSI, MEC, and IC contribu-
tions into the determination of the polarizabilities emerges.
As in the case of the differential cross section we per-
formed our calculations with the four models for the NN-
interaction mentioned above. The difference in the pre-
dicted values of Σ was found to be less than 4.5% in the
energy region between 200 MeV and 300 MeV. The very
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Fig. 10. Contributions of the different diagrams to the pho-
ton asymmetry Σ at Θγ′ = 90◦ in the center of the NQFP.
Dotted, dashed, and solid lines: 2a), 2a) to 2d) and 2a) to 2f),
respectively. The contribution of diagram 2b) is negligible and
not explicitly shown in the Figure
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Fig. 11. The asymmetry Σ calculated with analyses [40] (dot-
ted), [41] (dashed) and [36] (full). All the curves were obtained
in the center of NQFP for Θγ′ = 90◦ at ᾱn = 11

small dependence of Σ on the choice of the NN-potential
can be attributed to the following reasons: i) the effect
of FSI is negligible in the energy range considered (see
Fig. 10); ii) the only difference in the NN-potentials en-
tering into our calculation of MEC and IC is the cutoff
parameter Λπ. For the OBEPR(B) version from [37] we
used Λπ = 2000 MeV/c, for all other potentials Λπ = 1300
MeV/c. This difference does not influence the calculation
of the MEC and IC contributions. Therefore, although the
contribution of MEC and IC is more pronounced in Σ, it is
about 20% at 200 MeV and decreases rapidly with increas-
ing photon energy, the effect of the different NN-potentials
is negligible.

Calculations of the asymmetry with different multipole
analyses have shown that all the new analyses [36,41] give
very closely the same values for Σ (see Fig. 11). An effect
of the variation of the E0+ multipole is very small and it is
not presented in this figure. However, some disagreement
has been found for results obtained with the older one
[40]. In the energy region from 200 to 300 MeV the abso-
lute values of Σ for the analysis [40] are smaller by about
10%. Of course, there are firm reasons for believing that
the new analyses are more accurate than the older ones.
Therefore, we expect the sensitivity of the asymmetry to
the choice of the multipole analysis to be very small. An
inspection of Figs. 9 and 11 shows that uncertainties due
to this choice lead to the same effect as a variation of ᾱn
by about ±0.5.

4 Summary

Previous experimental determinations of the electromag-
netic polarizabilities of the neutron remained very unsat-
isfactory. For experiments on neutron scattering in the
Coulomb field of heavy nuclei, the extracted value of the
electric polarizability strongly depends on the extraction
method and therefore remains rather uncertain. The lat-
est value for αn has been estimated by Enik et al. [23],
leading to αn ∼ 7 − 19. The most promising method of

determining the electromagnetic polarizabilities is quasi-
free Compton scattering from the neutron bound in the
deuteron. It has been shown that the useful range of in-
cident photon energies is limited by the behavior of the
differential cross section. Below the π-production thresh-
old a precise determination of ᾱn is hardly possible. At
photon energies between 200 MeV and 300 MeV the triple
differential cross section and the photon asymmetry show
sufficient sensitivity to ᾱn for achieving good precision.
An accuracy of 5% and 10% is needed for the differential
cross section and the asymmetry Σ, respectively, to arrive
at ∆ᾱexpn = ±2.

In order to reduce the theoretical uncertainties from
rescattering and MEC effects, although they are expected
to be very small, a simultaneous measurement on the
bound proton is highly desirable. By comparing the re-
sults of quasi-free Compton scattering from the proton
with the recently measured free Compton scattering cross
sections [49] the influence of these effects can be studied in
detail. The most significant theoretical uncertainties stem
from multipole analyses of single pion photoproduction
on the nucleon and can be reduced only if one has new
and more accurate experimental data on pion photopro-
duction. At present, the uncertainties mentioned may lead
to ∆ᾱthn = ±2 when extracting the neutron polarizability
from data on the differential cross section of the reaction
(16) but only to ∆ᾱthn = ±0.5 if ᾱexpn is extracted from
the data on the asymmetry Σ.

Experimental efforts to investigate reaction (16) are
already underway at LEGS [50] and SAL [51]. A further
experiment has been approved at MAMI [52].

The authors are indebted to A.I. L’vov for supplying them with
the nucleon Compton scattering amplitudes calculated with
different multipole analyses of single pion photoproduction on
the nucleon and many useful discussions. One of the authors
(M.I.L.) highly appreciates the hospitality of II. Physikalis-
ches Institut der Universität Göttingen where part of the work
was done. The work was supported by Deutsche Forschungs-
gemeinschaft (Grant # Schu-222 and # 438 113/173) and by
Fundamental Research Foundation of Belarus (Grant # F94-
072).
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